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The Limit-Periodic Finite-Difference Operator 
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The limit-periodic discrete operator of the Schr6dinger type on the axis Z 
associated with iterations of quadratic polynomials is investigated. It is proved 
that this operator has a singularly continuous simple spectrum. Connections 
with the Sinai-Bowen-Ruelle measure and the conformal map onto a special 
comblike domain are established. 
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1. I N T R O D U C T I O N  

Spectral properties of limit-periodic (LP) Jacobi matrices associated with 
iterations of polynomials with a real Julia set have been considered. (1~ 
More exactly, what was studied were examples of bounded LP second- 
order finite-difference operators H+ on the "semiaxis" 7/+ having a con- 
tinuous singular spectrum. The spectral measure # of the operator H+ is 
the balanced measure (5~ of the iterated polynomial T(x) = x 2 - 2, 2 > 2. The 
support of # coincides with the Julia set J of T having a zero linear 
measure.(5) 

The LP property allows a natural extension of the operator H+ to the 
whole "axis" 7/. We will study spectral properties of such an extension H. 
(This question arose during a discussion of papers refs. 1 at the seminar of 
V.A. Marchenko.) The operator H is an orthogonal sum H=H+ OH_, 
which is why we need to analyze only the operator H _  acting in 12(7/+). 
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The main result is the following. The spectral measure v of the 
operator H is the Sinai-Bowen-Ruelle (SBR) measure (z) of the polyno- 
mial T. In other words, it is an "eigenmeasure" of the operator B* adjoint 
to the Ruelle-Perron-Frobenius (RPF)-type operator, 

g(Y) 
( a g l ( x ) =  ~ LT,(y) I  2 

T ( y )  = x 

which acts in C(J). It is known (2) that v is a purely continuous singular 
measure supported also on J, and v is mutually singular with respect to #. 
Thus, the spectrum of the extended operator H is continuous, singular, and 
simple. 

There is an interesting and useful connection between a spectrum of 
differential or difference Schr6dinger operators with periodic coefficients 
and conformal maps of the upper half-plane C+ onto special comblike 
domains. (6'7~ Recently such a connection was established for some class of 
operators with LP coefficients. (8~ The operator H does not belong to this 
class, but nevertheless such a connection exists for it as well. In Section 2 
we will prove that if B(z) is the B6ttcher function of the polynomial T(x) 
(see refs. 3-5), then the function O(z) = i log B(z) maps C+ onto the special 
comblike domain, and the Julia set J is a preimage of the base of this com- 
blike domain. (A similar statement was formulated in ref. 14 in an implicit 
form. ) 

In Section 3 we recall some facts on the operator H+.  In Section 4 we 
prove the main result and in Section 5 we discuss other properties of the 
operator H. Section 6 is devoted to properties of the SBR measure of T and 
of the operator B. We find the explicit expression for the Stieltjes transform 
of the SBR measure (i.e., for the resolvent function of the operator H ) 
and for the "principal eigenfunction" h(x) of the operator B. 

2. ITERATIONS OF P O L Y N O M I A L S  A N D  A C O N F O R M A L  M A P  
O N T O  A SPECIAL C O M B L I K E  D O M A I N  

Let Tn be the nth iteration of T(x) = X 2 - -  -~ ,  • > 2, and 
N r ( ~ )  = {z E C: Tn(z) ~ ~ ,  n ~ ~ } be a basin of attraction to infinity. 
Then I = C \ N r ( ~ )  is the Julia set of T. It is a nowhere dense, real, 
compact set of zero linear measure. (5~ In our case the polynomial T is 
expanding on J, i.e., inf{ [T',(x)[: xeJ}  >/ac ~, c >  1, a > 0 .  

Let # be the balanced measure (1"3-5) of T. This means that for every 
f E C(J), 

f f d # =  �89 [f((x+)~)l/2)+f(-(x+).)l/2)] d#(x) (2.1) 
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It is known (5) that such a measure always exists, is unique, and 
coincides with the equilibrium measure of J. 

Let H be the semistrip H = {z = x + iy: 0 < x < 2n, 0 < y < ~ } and let 
a > 0; then 

/ ~ _  2" 1{ ( 2 q + l )  ~7,} 
f2(a) = I I  U z = x + iy: x 2 ~ ,  0 <~ y 

n 0 q = O  

is the comblike domain (see Fig. 1). We denote by O(z) the conformal map 
of the upper half-plane onto (2(a) with the following boundary corre- 
spondence: 0(c~)=oo,  0 ( - 4 ) = 0 ,  0(~)=21t, where 2 < 4 < 0 0 .  Later we 
will link the parameters ~ and a. Such a map does exist. It is unique, and 
by virtue of the symmetry of the domain (2(a), we get 0(0) = n + ia. 

Let 
B(z )=  lim [ T . ( z ) ]  1/2" 

n ~  

12 iI i.l.,. .,.[iL.-I.,. 
' n / g  ' ~r ' 3 t t , / ~  ' g t t  

k e g  

.,.[Y,J.,. 

Fig. 1. The comblike domain (2(a). 
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be the B6ttcher function of a polynomial T. If z e C + w ( E k J ) ,  the 
function i logB(z) is single-valued. We choose such a branch that 
Re{/log B(0)} = re. We note that if 2 increases from 2 to o% then log [B(0)[ 
increases from 0 to oc. Now we use the functional equation B(T(z)) = B(z) 2 
and obtain the following statement. 

Let 2 < 2 < 0% ~ = 4(2)= 1/2 + (2 + 1/4) ~/2= max{x: xeJ},  a =log [B(0)]. 
Then 

O(z)=ilogB(z), z ~ C + ;  J =  0-1{[0, 2~z] } 

and the balanced measure # is the preimage of the Lebesgue measure on 
[0, 2~]. 

Remark. We have obtained the homeomorphism 

0: J ~ [ 0 , 2 z ~ ]  U (2q+l)zc  
2" n 0 q : O  

that yields the semiconjunction of T on J and the function 

~2x, x e [0, ~c] 
g(x)={4rc-2x,  x~ [~, 2~] 

on [0, 2rc]. Let 2, 2' e (2, oe), and 

i log iBm,(0)[ 
O: x + i y ~  x + loglBa(0)[ y 

be a quasiconformal homeomorphism with a constant distortion. Then 
q)=0[~oOo0;,  is the quasiconformal homeomorphism of the complex 
plane with a constant distortion that gives a conjunction of T~.Ij~ and 
T;, I s~,. An existence (but not the explicit form) of such a homeomorphism 
follows from the profound theorem of Mane, Sad, and Sullivan. (3'4) 

3. ITERATIONS OF P O L Y N O M I A L S  A N D  THE DIFFERENCE 
E Q U A T I O N  OF THE S C H R O D I N G E R  TYPE 

Let 1- be the following RPF operator in the space C(J): 

1 
(1-g)(x)=~ Z g(Y) 

T(y)  L x 

Then the balanced measure # is an eigenmeasure of the adjoint operator 
1-*. (Later we will also consider the operator -[ in L~. )  
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A system of orthonormal polynomials Pn(z) = P,(z, #) was considered 
in ref. 1. It is easy to deduce from (2.1) that 

P . ( z 2 -  2) = P2n(z), n e ~  (3.1) 

In particular, P,~ T .. As usual, there exists a three-term 
recurrence relation 

ER(k+l)]l/2pk+l(Z)+ER(k)]l/2Pk l(Z)=zPk(z), ke2+ (3.2) 

where [R(k)] 1/2 > 0, k e N, and R(0) = 0. 
We denote by H+ both the Jacobi matrix acting in/2(Z+) associated 

with the system {P,} and the unitarily equivalent operator of multiplica- 
tion by the independent variable in the space L~.  Thus, # is a spectral 
measure of H+. 

One can check the following operator identity in L2~: 

qI-(H z+ - 2) = H+q]- (3.3) 

By virtue of (3.1) the operator of decimation D acting in /2(2~+), 

(DO)(n) = O(2n), n e E +  

is unitarily equivalent to the operator -L Thus, Eq. (3.3) yields the renor- 
malization identity 

D(H~+ - 2 ) = H + D  

and the following recurrence relations: 

R(0) =0, R(2k)+R(2k+1)=2 
(3.4) 

R(2k) R ( 2 k  - 1 ) = R ( k )  

These relations allow one to prove inductively the estimate (1) 

2 
sup [R(p2n+ s)-R(s)t  < ~ - -  (3.5) 

p,,>o ( 2 - 2 ) "  

If 2 >  3, the latter estimate implies an LP property for the sequence 
{R(k)}k~+ and hence for the operator H+.  Indeed, 

R,(p2"+k)=R(k), 0~<k~<2"-1, p>~0 

is a sequence of the period 2". It follows from (3.5) that 

[[R,,--RIlt~(~+)<~e(n)--*O, n~oo 



868 Sodin and Yuditski 

The proof of LP was extended ~9) to values of 2 > 2.192 and to complex 
values of 2 with a large modulus. 

Let us extend the sequence {Rn(k)} to negative values of k by 
periodicity. The extended sequence is fundamental in/~176 We denote by 
R = R ( k ) ,  k e 77, its limit when n --* 0% i.e., 

R(-k) = lim R ( 2 " - k ) ,  k e  N (3.6) 
n ~ o o  

where the limit is uniform with respect to k. We denote by H the extended 
Jacobi matrix acting in lZ(7/): hk, k+ 1 = hk+ 1.k = [R(k)]  1/2, k E ,~, and all 
other elements of H are equal to zero. Since R(0) = 0, the matrix H has a 
block-diagonal form, i.e., the operator H is decomposable into a direct 
sum H = H+ | H _  and we must investigate the operator H _  in /2(2~ + ). 

4. A RESOLVENT F U N C T I O N  A N D  A SPECTRAL M E A S U R E  OF 
THE O P E R A T O R  H 

Let v be the spectral measure of the operator H _ ,  and 

dr(t) (" 

w(z) : w(z; v) = ! 
- ~ - t  J 

be a resolvent function of H _ .  We will express w ( z  2 - 2) through w ( z )  and 
obtain a functional equation for w ( z ) .  

Let us introduce the rational functions 

/ 'k  , (z)  
wk(z) = [ R ( k ) ]  ,/2 pk(z  ), Pk = Pk( ", l.t) (4.1) 

By using the recurrence relations (3.2), we get 

1 
w k ( z )  - R ( k  - -  1 ) 

z - R ( k  - -  2) 
Z - -  

R(1) 
Z . . . . . .  

Z 

Due to (3.6), the relation 

(4.2) 

w2~ --, R (  - 1 ) 
Z 

R(- -2 )  
Z 

Z . . . .  

(4.3) 
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holds for large [z[. It follows immediately from (4.1) that w(z)= w(z; v) is 
a function analytic outside of a limit set of zeros of the sequence of polyno- 
mials {P2,,} = {(1/,,f2) Tn} i.e., outside of the Julia set J. Consequently, 
supp(v) c J and (4.3) is valid in ~r(oo) .  

By virtue of (3.1), (3.4), and (3.2) we have 

1 
w ~ . ( z  2 - ~ )  - E z w 2 o + , ( z )  - 1 ] 

R(2 ~ - 1 ) 

Passing on to the limit when n --+ oo, we deduce 

w(z 2 -  2) zw(z)-  1 (4.4) 
R(--1) 

This is the functional equation for w(z) that we sought. The respective 
equation for the measure v is 

1 1 
T*v - ) l - - R (  - v (4.5) 

X ~ 

where x e  J is an independent variable. We introduce the RPF operator 
B = �89 2 or, in other words, 

g(y) 1 g(y) 
(Bg)(x) = ~ 1T'(Y)[ 2 - 4  v) ~ y2 '  g~C(J)  

T ( y )  = x T ( '  = x 

Then, because of (4.5), v is the eigenmeasure of the adjoint operator B*: 

1 
B*v - -  v 

2 R ( -  1) 

Now we recall the RPF  theorem (2'4) for the operator B. Let p be a 
spectral radius of ~. Then p is a simple eigenvalue of the operators B and 
B*. We denote by h(x)~ C(J) the corresponding eigenfunction for B and 
by ,7 the corresponding eigenmeasure for B*. Then h(x)> O, x e J, and 9 is 
a nonnegative measure. If  we choose h(x) in such a way that ~ h d~ = 1, 
then for any g ~ C(J) 

It  easily follows from (4.6) that v=Cg, C = c o n s t > 0 .  The eigen- 
measure v is called the SBR measure. The measure h dv coincides with a 
unique Gibbs state on J with respect to the Holder continuous function 
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(p = - 2  log ]T'I. In particular, the measure v does not have discrete mass 
points. It follows from ref. 2 that the balanced measure and the measure 
h dv are distinct ergodic measures. Hence they are mutually singular. 

5. FURTHER PROPERTIES OF THE OPERATOR 

1. It is possible to prove the following equalities similar to (3.1): 

zp , (z2-; t )=p2,+l(z) ,  nE77 + (5.1) 

where P , = P , ( . ,  v) are orthonormal polynomials with respect to the 
SBRmeasure. Let us define another operator of decimation in /2(7/+): 
(~0) (n)  = 0(2n + 1), n s 7/+. Equalities (5.1) yield the renormalization 
identity 

5 ( H  2_ - 2) -- H 

2. One can ask a natural question about the hull (11'12) of the LP 
sequence R. 

Let 12 be the ring of all entire dyadic numbers with the usual topology. 
It is not difficult to show that the hull of R is {Ro,}~,~h=cl({Rk}k~),  
where cl denotes closure in/~176 and Ro,(n)= R(n + co). 

Let H(co) be an operator in 12(77) generated by the sequence R~. If 
co~I: \Z,  it is easy to show that Ro,(n)~O, n~Z,  and the operator H(co) 
is not decomposable into a direct sum. It is known (11"t2'15) that the spec- 
trum of H(co) does not depend on co; hence, a(H(co)) = a(H) = J. 

3. It is also known (11'~2'15) that the integrated density of states (i.d.s.) 
does not depend on co. The i.d.s, of the operator H+ coincides (~) with the 
distribution function M(x)=/~((-oo,  x)) of the measure #; therefore the 
i.d.s, of H(co) also coincides with M(x). 

Let 
~) 2"--1 1) 

9)l= U (2q+ rt 
2" n=0 q--0 

be the frequency module of the sequence R. According to the Johnson-  
Moser theorem, (is) M ( x ) c  9Jl if x ~ ~ \ a ( H ) =  ~\J .  By using the map O(z) 
(see Section 2), one can easily show that in our case {M(x): x~  ~ \ a (H )}  
= 9~, so the gap labeling is complete. 

6. T H E  SBR M E A S U R E .  S O M E  C A L C U L A T I O N S  

First we recall that both the SBR measure v and the operator ~ play 
important roles in the measurable dynamics of an expanding polynomial T 
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(see ref. 2). Let p be a spectral radius of the operator B in the space C(J). 
Then by virtue of the RPF theorem the equalities 

log p = lim -1 log B% 
n~oo El 

1 (6.1) = lim l l og  ~ [T~(y)[ 2 
n~oo  El Tn(y)= x 

are valid, where the latter limit is uniform with respect to x ~ J. It follows 
from (6.1) that log lip is equal to an escape rate, (2"1~ i.e., 

log -=1 lim _1 log 1 
p , ~  n area U(e,n) 

where U(e)= U(e, 0) is an e-neighborhood of the Julia set J; U(e, n ) =  
T_n U(e) is its full preimage under T,. 

Let us note that 

~ = 2 [ x -  T(0) ] '  ~ x - z  = - T ( z )  x -  ~r(0) (6.2) 

[The operator ~ acts on a variable x~J ,  and ZEST(Or) is a parameter.] 
By virtue of (6.2) and the RPF theorem, one can seek the function 
h(x) = lira, ~ ~ p-"Bnr in the following form: 

h ( x ) =  ~ c~ 
k = 1 x -  T~(0) 

Using again (6.2), we find that 

(2p) -k 1 
h(x) = const �9 TI(0~..  7 T--~-~_ 1(0) x - Tk(0)' const > 0 

k=l  

where 1/2p is the zero of the entire function 

~o t k 
F(t) 1 

"~- k@l T I ( O ) " "  r k  1(0) T k ( O )  
(6.3) 

with the least modulus (such a zero is unique). It should be noted that the 
series in (6.3) converges very rapidly and that the function F(t) decreases 
when t grows from zero to infinity. These circumstances allow us to easily 
find the numerical value of the escape rate in our case (see Fig. 2). It is 
interesting to observe that the eigenfunction h extends to a meroporphic 
function in the whole plane. 
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6 ,  DO_ 

~ , 5 8  

~ ~ , 3 8 _  

j;~q4 �9 9 6  
~ , 7 5 _  
~ . 5 4 _  

4.:;13 
4.13 

3 . 9 2  
:I.?I 

: ] . 5 C  

3 . 2 9  

3 �9 OO 
2 , B e  
I I .  1~7_ 
:i 4E 

2 . 2 ~  
II. 0'1 
1.83 

l . & 3  
1 . 4 2  
1 1 2 1  

I �9 00- 

Fig. 2. The escape rate of T(x)= x 2- 2, )~ > 2. 

Now we will find an expression for the resolvent function 
w(z) = w(z; v). Let us rewrite Eq. (4.4) in the form 

1 1 
w(z)  : - +  w ( r ( z ) )  

7. 

Iterating this equality, we obtain the desired series 

(2p) k 

w(z)--k=0L To(z ) T l ~ j ; [  " Tk(Z) 

This series is well defined on ~ r ( ~ )  and has the following property: its 
partial sums 

(2p)-k  

~ ro(z) . . .Tk(z)  k = O  

are [2 N -  2/2 N -  1 ] Pad6 approximants of w(z). 

Remark. In ref. 13, devoted to the convergence of [ 2 n - 2  ~ -  
1/2 n -  2 t]  Pad6 approximants of the Stieltjes transform of the balanced 
measure #, Levin introduced an entire function 

o o  

A(t, z) = ~ ? 
=o To(z) Tk(z) 
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a n d  p r o v e d  the fo l lowing  r e m a r k a b l e  fo rmula :  

2 A( t ,  z)  _ ~ Wz,(Z) R(2  n) t n 
F ( t )  n - 1 

This  f o r m u l a  yields the iden t i ty  

2 - ~ R(2 n) t" 
F ( t )  . - 1  
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